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Second virial coefficient for the Landau diamagnetism of a two-component plasma
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This paper investigates the density expansion of the thermodynamic properties of a two-component plasma
under the influence of a weak constant uniform magnetic field. We start with the fugacity expansion for the
Helmholtz free energy. The leading terms with respect to the density are calculated by a perturbation expansion
with respect to the magnetic field. We find a magnetic virial function for a low density plasma which is exact
in quadratic order with respect to the magnetic field. Using these results we compute the magnetization and the
magnetic susceptibility.

PACS numbsg(s): 05.30—d, 05.70.Ce, 71.45.Gm, 52.25.km

[. INTRODUCTION response. However, the full response of the ffeeninter-
acting electron gas, including the spin part, is paramagnetic.

The topic of matter in magnetic fields has received much The magnetization of a system of charged particles is a
attention. The magnetic field has a great effect on the indiboundary effect. In classical mechanics the magnetization
vidual motion of charged particles. In classical mechanicsnduced by the motion of the bulk electrons is cancelled by
the motion of free particles in a magnetic field can be dethe magnetization connected with the surface current. Again
scribed by circular orbits. The frequency associated with thén quantum mechanics this statement is not valid anymore.
rotation is the cyclotron frequency.=eBy/m.. In quan- Landau used a perturbation expansion of the free energy with
tum mechanics the motion perpendicular to the magnetitespect to the magnetic field, to circumvent difficulties due to
field is quantized with the corresponding energy eigenvaluethe boundary effects. In doing so the electrons at the bound-
E, =hw.(n+1/2) [1]. A wide range of subsequent investi- ary of the system were neglected. Then the magnetization is
gations covers the properties of atoms and molecules in madeund as the derivative of the free energy with respect to the
netic fields. Their study is motivated by the astrophysicalmagnetic field. Another approach has been chosen by Teller
implications concerned with the physics of pulsars and neut11]. He calculated the current at the boundary of the system,
tron stars, but also by its application in quantum ch@esf].  produced by the motion of the elctrons under the influence of
The calculation of the energy spectrum of a hydrogen atonuniform magnetic field. From this he computed the magneti-
in strong magnetic fields has been tackled by various authorzation of the system and was able to show the equivalence of
[5-7]. One of the complications found in the theory is the his method and Landau’s approach. However, as Teller al-
coupling of the center of mass motion with the relative mo-ready pointed out Landau’s method is much better suited for
tion [6]. This also complicates the calculation of the thermo-more complicated problems.
dynamic functions of a low density plasma. However, this The difficulties connected with the boundary effects are
effect becomes important at strong fields only. Throughouperhaps one of the reasons for the few results concerning the
this paper we will consider the weak-field limit in which case equilibrium statistical mechanics of a low density quantum
this effect becomes negligible. In this limit the proton massplasmas embedded in an external magnetic field. A first at-
is considered to be infinite. tempt beyond Landau has been pursued by Alastuey and

Although the magnetic field affects the individual motion Jancovici. They studied, by means of a Wigner-Kirkwood
of the particles, there is no influence of the magnetic field orexpansion, the magnetic properties of a nearly classical one
the equilibrium properties of a classical charged particle syscomponent plasmgDCP in two and three dimensions in the
tem. This follows from the Bohr—van Leeuwen theoremweak field[12] as well as in the strong field lim[tL3]. Re-
[8,9], which can be easily derived by changing the variabldated problems were treated by Corfil4] and Boose and
in the momentum integrals in such a way that one work$erez[15] who derived a formally exact virial expansion of
with the variabler=p—eA. As a result of this all equilib- the EOS of a multicomponent plasma by using the Feynman
rium properties are independent of the magnetic field. IrKac path-integral representation of the grand-canonical en-
quantum mechanics this argument is no longer valid, sinceemble.
the momentum operator and the coordinate operator of a This paper is aimed to calculate the magnetic properties
particle do not commute. A common example of an equilib-of a quantum plasma in the low density limit. These systems
rium value which depends on the magnetic field is the magare characterized by a small coupling paramé&tewhich is
netization of an electron gas. It was shown by Lanflsd]  given by

that the low field magnetization of a spinless electron gas, in
2

Boltzmann statistics, is r= e )
 AmekTd’ @
_ nephe a
o™ 12m ) whered=(3/4mn)*? is the mean distance between the par-

ticles. We follow the method of Landau for the calculation of
i.e., the so-called orbital part contributes to a diamagnetithe magnetization. The starting point is the fugacity expan-
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sion of the Helmholtz free energy. In a previous wi6] P=Pig+ Pint- 5
the authors have performed a perturbation expansion for the

equation of state of a low density plasma up to the ordef, the case without Coulomb interacti@d=0 the pressure

n2e*, which is valid at arbitrary magnetic field strength. In and the particle density of the plasma in a homogeneous
the present paper we perform an expansion of the thermOdYﬁagnetic fieldB=(0,0B,) are given by a sum of Fermi
namic functions for a low density plasm&<1) up to the integrals over all Landau levels

ordern? and calculate the coefficients of this expansion in

quadratic order with respect to the magnetic field, without

making any approximation with respect to the Coulomb B 4Xa 1 , a

problem. Using a diagrammatic language this can be restated Pia= kTg F - ,,20 Fiz [In(zy)],

as the calculation of all ladder diagrams expanded to second a

order in the magnetic field. In doing so we will consider the (6)
B andB? terms of the Hamiltonion separately. We will see 2x, 1

that the separate contributions are divergent, only the sum of n= E —_—— 2' F_1p[In(Z0)]

all contributions give a convergent expression. This is the a Ag m n=0

price which we have to pay within the present method cir-

cumventing the calculation of boundary effects. (Xa=% 0/ (2KT) with w?=|e,|Bo/m,, An= h/\/WI',

ThlS paper iS Organized as fO||0WS. In Sec. ”, we diSCUSSand Za=exp:ﬂ(,u—nﬁwa)]). The prime indicates the dOUb|e
the representation of thermodynamic functions by a fugacit umrﬁation due to thg spin degeneracy except fomth®
expansion. The second virial coefficient of a magnetizecyfevel
plasma will be discussed in Sec. Ill. In the first part of Sec. The interaction part of the pressure will be expressed in

.”I’ we pr.ese.”t in more detail the calqulation_of thg eIectron-terms of a fugacity expansion which will be truncated after
ion contribution to the thermodynamic functions in the casethe second virial coefficierfil7—21]

of an infinite proton mass and in the second part an analytica
continuation will lead us to the electron-electron contribu-
tion. In the third part of Sec. Il the asymptotic behavior of K> ~~ T
the new proposed magnetic virial functions will be studied. 'Bpim:EJr% Zazb(§
Finally, the derived results are used to compute the magne-

tization and the magnetic susceptibility in Sec. IV. . eg eﬁ
i 27 Ameq (Amey)?

N3pEapin( kX ap)

+B,,| +0(z%4n2), (7)

Il. REPRESENTATION OF THE THERMODYNAMIC

FUNCTIONS BY A FUGACITY EXPANSION . - .
where we have introduced the modified fugacities

In this section, we briefly present the general method used
in this work and give the exact results derived in an earlier 2 X
work [16]. Let us consider a two-component charge- Ea: Za— S —
symmetrical system dfl spin half particles of chargee) Ag tanh(x,)
and massn, andN spin half particles of charge and mass
m;. The Hamilton operator of our system consists of tWoin order to havé&,—n, in the limit of small densities. The
particle contributions. Each pair of speci@sndb contrib-  fist term on the right-hand sidéRHS) of Eq. (7) is the
utes Debye contribution in the grand canonical ensemble. The
(Pa—€.A,)2 sq~uared inverse Debye radius is given = B(e?/ €;) (ze
H2b= ( T om. +M§Boaz) +2;). Since it is a classical contribution the Debye term does
a not depend on the field. In the limit of small densities EAj.
coincides with the formally exact virial equation of state de-
FAVap(r), rived by Cornu[14] and Boose and Per¢15]. We now try
to extend these calculations and focus on the calculation of
3) the second virial coefficierB,,. In order to avoid conver-
gence problems let us in a first approach cut the Coulomb tail
at large distances, i.eV,,;,(r)=0 if r>R. Then the second
virial coefficient reads

®

—e,AL)?
+((Pb bAb) T

2m,

og,=—1+1
with the Coulombic interaction potential

€46p
47T€0f )

Vap(r)= (4) 1 (Ag tanr(xa)>

Ban=20 172 Xa

HereH ,, is the Hamilton operator of the two particle system 3

and HY, of the noninteracting system. The additive term X(ﬂtamxb))n(e—gﬁab_ e %) (9)
uiBgo, takes into account the coupling between the intrin- 2 X '

sic magnetic momerjtug=e,f/(2m,)] of the charged par-

ticles and the magnetic field. We suppose that the pressurkhis function will be studied in more detail in the next sec-
can be split into ideal and interaction contributions tion.
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Ill. SECOND VIRIAL COEFFICIENT 1 (A3 tanh(x,) Ag tank(x,)
OF A MAGNETIZED PLASMA b= ae 2 alll =2 p”
2Q Xa 2 Xp
It is convenient to divide the second virial coefficient into K
the direct parBj, and the exchange paBty wTrS) 5 f dz & P2 ' Vas| —5 .
7” ab~ Z Hap— 2
Ban=B3p+ BSadan, (10

(15

and to compute them separately. The exchange p@}o&s  The contour integral may be taken in the sense of an inverse
defined by Eqgs(9) with the Hamilton operator given by Eq. | aplace transform. The operatBf means that all terms of
(3) is convergent while iR—c the direct part is divergent. order less tha@‘4 have to be omltted, since they have already

action which leads to collective effects. In order to includeyyyitien in the general form

these collective effects one has to perform a screening pro-
cedure, which may then lead to convergent expression for * g(k_z)hk(xavxb)(gab k

. . . . " 3/2y 3 >ab
Bab. Such a technique is well established in the zero mag- Bap=2m )\abk T T(1+K2) 5 ) . (16

netic field casg17-21 and can be easily extended to the
nonzero magnetic field case. In genel,, is an analytic  The functionsh, expressing the magnetic corrections satisfy

function of the interaction parametéy, [21], defined by the zero field condition
B €,6p hk(0,0) =1. (17)
Eab=— TreokThay' (11

Therefore in the zero magnetic field case an exact calculation
of the convergent second virial coefficient is possible in
agreement with earlier worfk0,21].

An alternative expression for the field free virial coeffi-
cient which we may refer to aB? apb May be obtained by
introducing the quantum virial funcuo@o(gab) [21] accord-

with A jp="%/y2my,k T and mgy,=m,my/(my+my) being
the effective mass. Hend®,, may be written as a Taylor
expansion. Using the methods as described in R&#%-21]
we derived in our earlier workl6] the lowest order contri-
bution toB,,. As in the zero field case we write the dlrect

part of the second virial coefficient of the plasma in the fol- Ing to
lowing form: B2, =2mA\3,Q%£.p), (18
BY,=B.,+ B, (12 with
where the contributions of second and third ordegjp are Q%(éap) = — E\/;gb g b( ¢ +In3— 1)
included inBJ,,, with 2 2 2
o {(k=2) gab
, 1 19
o=~ 5 8% X0) T2 e 9

rlC 1 Note that the second order term may be included into the
- 3|75 *log3- E) A3 hs(Xa.X,).  (13)  series, since(0)=—1/2.

Now let us discuss the exchange part. Again, as it was
shown in Ref.[16] this contribution may be written in a
Taylor expansion

In general the magnetic field correctidn 5 satisfiesh, 3
=1 if the magnetic fieldB=0. The second order term has
been found in Refl16] and is explicitely given by k—1)bu(x k
B _773/2)\3 E (l 22 k) ( ) k( a) g
T(1+k/2) | 2

ha(Xa,Xp) = (1 fdt\/t(l ) (YatVp) (20)

Here we have included the terms with nonpositive arguments

XarCtanh/l_(ya+yb) 14 in the ¢ function. In particular we have used the relation
VI=(Yatye) /) lim(1-22"%¢(k—=1)=In2. (21)
k—2
with Yab=MaabpSiN&aps)SINXap(1-OVINGHL  The zero field results are reproduced, since we Hay®)

—)2xapsinh,p)]. The magnetic field correction is so far  _ 1 4 they may be written, after introducing the exchange
not exactly known. In the limit of zero fielth;=1 holds; .1 finction E%(£,.), as
a

furthermore, in the next section we will derive an expression

for h in the weak field limit. Bg§X: - W)\gan(faa), (22)
Formally the higher order contributions may be expressed

by a resolvent expansidi20] with
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sinh(x.) ,, [ dz 1 1
d_4.3/23 & ok - Bz _ .
(23 Bei=4m"°\; X P ch’TTi e Tr( ho—z hgi—z>’

(28)

k

” Lk Sk=1) [ &an
E%(faa) =2 (1-22 k>m(7

The influence of the magnetic field on the exchange part has
been studied in16] for the lower order termb,, b;, and  with A.=7%/y2mkT. Here we have introduced the Hamil-

b,. The following analytical expressions were derived: ton operators for the free relative motion
2 2
cosh2x,) tanh(x,) o P Mewy ,  fiwe
bo(Xa) = (24) hei=5—+ p*—i -, (29
olXa) cost(xy) Xa 2Me 8 2 9¢
and and for the relative motion of the interacting particles
e2
baix) cosh2x,) tanh(x,) arctanh/1—tanh(x,)/x, hei=hgi— Aregr’ (30)
1 Xa = .

cost(x,) Xa Vi—tanh(x,)/x,

(25)  We are interested in the case of a weak magnetic field with-
out making any approximation with respect to the Coulomb
For an integral representation lnf we refer the reader to Eq. problem. For that we expandB.; in powers of X,
(C4) of Ref.[16]. =hwJ2kT. It can be easily shown that the linear term is
equal to zero and the first nonvanishing term is proportional

A. Expansion in the weak field limit to x2. This contribution may be written as

for the ion-electron interaction 2

X
1+ —

6 BY+Bgi+ B3 (31)

We shall find an expansion of the second virial coefficient BY,=
in the weak field limit. The magnetic field is now assumed to

be a small perturbation to the field-free Coulomb problem. InT

this case we can use the already established results for tl?%‘ r?sftg?]tt t::]r; t?]oeTe?irgotWetT;ng;sans%?eT of ig]eennt? m:r?élzzlggo
second virial coefficient in the absence of a figld]. Due to y 9 y

the invariance of the thermodynamic functions under thef|eld result[21]. In order to take into account the infinite

: 0
transformationB— — B the first correction to the field-free Eroton mass inBg one has tg replacere; by Ae
results will be quadratic in the magnetic field. This can also— "/ V2MeKT and, henceée; by £e=—eqe /(4megkThe).

H 2
be verified in the ideal contributiofPauli spin magnetism 1he other two terms, being of the ord8(B°), are the result
and Landau diamagnetism of an expansion of the trace in powers of the magnetic field

Let us consider a hydrogen plasma with an infinite protornd read as
mass. This is a reasonable approximation in the weak field
limit, as the proton frequency is proportional to the inverse 51:47T3/z)\3pk/f d_z_e—gz
mass of the proton. We chose the symmetric gadge  °' ¢ Je2mi
=2(BXr). Then the Hamiltonian in relative and center of

mass coordinates takes the form T 1 (__ﬁwc i) 1 (__ﬁwc i) 1
) 5 2 h®—z 2 Jp/h°—z 2 Jp/h°—z
P p Mewe g J
He=om Tom. " 78 » ' 2 39 (32
e? and

47T€0r ’

1 (mew§ 2) 1
where w, is the electron cyclotron frequency. The elctron- h¢e—z\ 8 he—z|
ion contributionti to the second virial coefficient is given (33

by the following trace:

1 k,(A_?)(A_gtanr(xe)

d__—
Be=2a" 1212 Xe

dz
2 _ _2.302 3pk’ —pz
BZ=—47%A3pP szie Tr

Hereh®=p?/2m,— e?/4me,r is the Hamiltonian for the Cou-
0 lomb problem for zero magnetic field. In what follows we
)Tr(e’gHEi—eBHei)- briefly outline the steps leading to the final result B} and
27) B2,. For simplicity the calculations of these contributions
may be carried out separately, but as will be seen below only

As in the zero magnetic field case we have defined an operdd€ sum of both gives a convergent contribution.

tor PX’ that takes into account the divergency, by omitting all
terms of ordereX with k<k’.

The trace over the center of mass coodinates and over the Let us first concentrate on the calculation Bf;. The
spin variable is readily carried out. Again we use the resolperturbation operator has spherical symmetry. Thus it is con-
vent representation to obtain the following contribution:  venient to use the eigenfunctions of the Coulomb operator.

1. Calculation of BY;
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With that the calculation of the matrix elements becomedn order to compute the sum overand| we will expand the

trivial. As in the zero field case we can write ¢ function, we have
Bl-=4773/2)\3Pk,f Ee_ﬁZ R [+14+ — =R i i ®(1+1 I_ ‘
el e CZﬂTi e'/’ 2 '[Ee - ekzok!lrlj ( ) 2\/{ ‘fe .
(41
N (hw 5o
E E 2 — 2 E Now the summation ovem and| may be carried out. We
n=11=0 m=-1 (E,—2) -om= obtain by introducingr:I +1+s
» 1 (hwo)? 1 d&(k) ® 1
XL dk(h2k2/2m_z)3 2 "r a0 B8 e > E m _lﬁ(k)(Hl)
1=0 m=-I !
Here we have made use of the relation between the density o o 1
of states for the continuum states and the scattering phase _ ., ' ~ 53 2
shifts 6,(k) of the Coulomb system. The eigenvalues of the =(=D'P Z:o 3(2| +3l +I)S§::o (I+1+s)k+?
Coulomb system reaH,,= — 1/2n? and can be expressed in
terms of the parametéet by 1 711
¢ =(— 1)"Pk2 — > —(2| +31241)
= +1
— BE, = (e) . (35) Lrttizo3
n
_(_1\kpk' _ _ _ —
First we compute the discrete part of the partition function, =(=1°P 6[5(" 3)—¢(k=1)]. (42

that is given by the first term in Eq34) and reads
Next we perform all remaining integrations. In this context

2 o n—1
, _ he following integral representation:
Blb 47323 Xe pk m2e~BEn (36 we may use t
AT 24 B (30 R

dz __( dt & i

where we have performed the inverse Laplace transform. Cﬁe c’tT’z(t—z)3 NG €e

The summation ovem and| is trivial and one immediately

finds that 2 (&l
S (43

I'l(k+3)/2]\ 2

1b 3/2y 3 e Kk’ 4_ L2 é
Bei =4m )\elzp 21 (n*=n )exp( Zn) L Here the contour integr&’ in the complex plane encircles
the positive real axis in the mathematical positive sense. Us-
By expanding the exponential and using the representation dfig Egs. (40), (42), and (43) we obtain, after shifting the

the ¢ function we obtain summation indexk—k—1, the series
k
B~ 4 Wxipk, s Akod)—dk-2) &e|* Bls_ o a2,3% 2 (k=4 —g(k= 2)(_@)_
€12 =57 ... T'(1+k/2) 2/ ©! ele ['(1+k/2) 2
(38 (44

So far we have calculated the bound state contribution t&inally we sum up the bound staf88) and the scattering
BL.. In the next step we consider the contribution of conti-State(44) contribution, which gives
nous spectrum. For that we need the scattering phase shifts

o S " nop ' £(k—4) =~ {(k— 2)(|§e|

of the field free Coulomb problem that are given b 1.— 3/2) 3 e
P given by Bei=2m elez r1+k2 | 2 ) - 49

2

dék— 1/[emg
d_k'()__ﬁ 22

. e2
| +1+i

m . . . I

2e ) (39 Here the sum runs frork=6, since in this derivation the
lower order term&k<6 would give divergent contributions.

However, formally the/ function can be extended to nega-

)Rezp

Making use of this relation and introducing-Azk” the sec-  tive values and therefore the sum to smakamlues such as
ond term in Eq(34) may be written as k=2, 3, 4, and 5. It will be shown below that this exten-
q o sion is possible and gives the exact lower order contribu-
1s_ _1/2, 3,2k’ ap— 2 tions.
Bei=mAexeP jcﬁe .20 m;. m Note that the bound state contribution and the scattering
state contribution differ by a factor of 2. This general state-
=dt & ; ) ment has been previously derived in the zero field ¢a6¢
Xj ———Re Y| | +1+ —| & It is essentially a consequence of the analyticity of the sec-
0 t3/2 (t—2)° 24t ond virial coefficientB,,(&¢) and expresses the fact of com-

(40 pensation of bound state and scattering state contributions
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according to Levinsons theorg@0]. One may also regard it 3. Final results for the electron-ion contribution
as rule of obtaining scattering quantities from bound state \ye can now take the sum of the various contributions

q_uantities. We will employ this relation in the following sec- Egs.(31), (45), and(51) in order to obtain the quantum virial
tion. function. As we have indicated before we may now drop the

2 Calculation of B2 operatorPX’ and may postulate the virial coefficient, with
N el
Again we first concentrate on the calculation of the bound 2

4 Xe
state contribution. We may use the eigenfunction of the Cou- BYi=2mNIQ%(&) + 23 24QB(§e)1 (52
lomb operator to evaluate the trace. Thus we have

where we have defined the new magnetic quantum virial

B20= — 4732\ 3p¥ f Zd—;e—ﬁz function QZ,, by
C
© -1 | 2 {(k=2)+(k=5){(k—=4) [ £ap
e 2<n|mm;)cr25m29n,m>_ QP =3, & R (2)
n=11=0 m=-1 (E,—2) (53
(46)

In spite of the fact that the derivation given above is valid
The calculation of the matrix elements is readily carried outonly for k=6 we have extended the sumke:2. By study-
[1], with the result ing the asymptotic properties of this function we will show
that the magnetic quantum virial function has the correct
nlm> asymptotics for largg€. Another independent verification of
this result can be obtained by expanding the exact second
) ) order contribution as given in Eq14). The quantum virial
_ Mew; a2 n—[5n2+ 1-31(1-1)] function QB(&,) may be interpreted as the limit @°(&g)
g "B2 with an infinite proton mass,— . For k=3,5 we make
use of the relation Iirp_}a(k—B)g(k—Z)=1. In the next

413+612+2(21 +1)m?—2| — , . _ ,
ST D=1 (2153 (47 section we will show that the same analytical function deter-
( ) ) ) mines also the contribution of the electron-electron interac-

2
Maw
<n|m‘ ;Crzsinze

With that we obtain after integration and summation over the'o"-

magnetic quantum numben
B. Electron-electron contribution

'~ We first study the Hamilton operator in c.m. and relative
B2P=—4 3’2>\3 Pk e PEun? . . a1 &
€ 7 2 2 coordinates. In this case the Hamiltonian is separable and
. ) may be written a$d .= HSJ "+ hee, With the center of mass
81°+12°-21-3 Hamiltonian

X[5n%+1-3l(1+1)] 2I=D2+3) (48)

P2 eZBZ

2ei @2 Wc O
am, T am, SN0 -7 og

cm._
Hee

By summing ovell we get (54)

It describes the free motion of a particle with mas®,2
parallel to the field. While we have an harmonic oscillator
with frequencyw.=eB/m, perpendicular to the field. The

As before we expand the exponential, introduce gHfanc- ~ Hamiltonian for the relative motion is given by
tion and obtain the following expression for the bound state

=¥ (7n2+5). (49

e

BoP=—4m 3P D e e
n=1

2 2p2 2
contribution: _p_ eB in@2—i haoc i €
E k hee=—+ T6m, r2sin6?—i 5 a¢+4we0r' (55
B2_ _4 3/2)\3_8 E 7¢(k—4)+5¢(k—2) % - _
€24 & T(2+k/2) 2 It has the same structure as the Hamiltonian for the relative

(50) motion of an electron in the field of a proton with infinite
mass. The only difference is the appearance of different
Now we shall calculate the scattering part. This contributionmasses in the various terms b§; and h.,. However, by
may be obtained by applying the same arguments that hawppropriately redefining the length scales and dimensionless

led to the final expression (B;b: parameters involved in the problem, one can rhgponto
he;. This means in detail the replacement@fby A .. and of
s 3 3 e 7§(k 4)+50(k—=2) [ & &. by &..in Egs.(52), (53). Now we may use the analyticity
Bei=—27\e 3, 24 & (2+k/2) P of the virial coefficient with respect to the interaction param-

(51)  eter. We may extend the result obtained for the electron-ion
part Eq.(53) by analytical continuation to negativevalues.
Again, only contributionk=6 are retained from this sum. Thus we have for the electron-electron contribution
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2 . . 'B
With that and after rearranging the sum overCk,°(£¢) can
Bee=2mA3Q%£eo) + 27 )\ee24 QP(&eo)- (56 pe rewritten as

The magnetic quantum virial functio®®(&.e) is given by Q'® j‘”'x dt e o

Eqg. (563). Note that this series holds also for the ion-ion in- (&)= \/— 2qi t2 2 (k=3)2(k=2)

teraction ifm, is substituted bym;. However, its contribu- 5 .

tion to the virial coefficient is negligible in the weak field 3 13 [(2) [ €\*

L. |l ) - sl
Let us briefly state the result for the exchange part of the

electron-electron contribution. It may be obtained by intro- 27(3) [£\°

ducing an additional factor<1)' in Egs. (34) and (46) —\/;m<§) (61

which takes into account the exact symmetry of the wave-
function. Then following the same steps as described in Segn the following we make use of the relation:
Il we find

E DX(k—=3)¢(k—2)x*=x (z//’(X)—%), x>0,
e k=4 X

cost(Xe) (62)
X2 cosh2x,) which gives then

_ e Y B
™ eeg COSFF(XG)E (fee)v (57) B s+in dt @ 5 4 f 2
o) ol [

with the new magnetic exchange virial function

(A= rl
E%(éaa) = J‘E)Fu+km)2+ku 24799¢(k-3) 2\t) 1€ r(4)12
20(3) (¢
() It 7 2sa) ©3

) . It useful to employ the asymptotic expansion of ghdunc-
The factor cosh@@)/cost(xy) in Eqg. (58) is a result of the  ion

spins of the particles and can be calculated exactly. Again,

one may check these results for the orkler0,1 by compari- 1 m
son with the exact contributions given by E¢@4) and(25). P(x)=Inx— 2% & s XZS +Im(X), (64)
S=
C. Asymptotic properties of the virial function with the Bernoulli number®,,. Then we can perform the

Let us now make an independent test of the above madéverse Laplace transform and find the following asymptotic
statements. This investigation relies on two facts. First weexpansion of the truncated magnetic quantum virial function:

consider the elctron-electron contribution only, then in the J7 5w (1

limit £€—c the quantum virial functionQ®(&) should be Q’B(g)___[lJr 2§(3)]<§) 7 +§(2))
equal1 to the Wigner-Kirkwood expansiofil2], since & 972 r(4)\2

~#f~*. That means in this limit the plasma behaves essen- 4 3 2
tially as a classical system. The second argument is that the <§) V7 ———(1+B,) g) _ i(ﬁ)
electron-electron contribution may be obtained from the ion- 2] I(72) 2I'(3)\2
electron contribution, and vice versa, by simple replacements \/— \/— 5
of the interaction parameter as discussed in the previous sec- - _77(52+ 34)( §) ——(B,+Bg) )
tion. Let us start by studying the higher order contributions I'(5/2) I'(3/2) §
k=6 to the magnetic virial functioritruncated virial func- J7 3

tion), which read according to E@53) as R veTs) (Bg+Bg) : +o(g75). (65)

Now we may conclude that the full magnetic virial func-

tion defined by

(k=3){(k—=2)+(k—=5)¢(k—4) [ &
Q&)= J—E T(2+k/2) (2)

(59
k—=3){(k—2)+(k—=5)¢(k—4
with £<0. TheT function can be represented by an inverse QB( \/—2 ( ) )+ )& ) ( g)
Laplace transform I'(2+k/2) 2
1 (o= dt € +Q"%(9) (66)
= f — . (60) _ _ _
I'(z)  Js-iw2mi 2 has the following asymptotic representation:
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4.0

4 4

B —
Q=25 T 1055 +o(£7°). (67
Remarkably, this procedure is accompanied by a term by 3.0 ¢
term cancellation of the lower order contributidns 6 com-
ing from the Taylor expansion with those coming from the
asymptotic expansion. The final expression may now be g
compared with thei? expansion, which was computed by =
Alastuey and Jancovici[12]. The linear term in the
asymptotic expansion dB(¢) is the term proportional to
the 22 term of the Wigner Kirkwood expansion and coin- 10 L
cides with that of Alastuey and Jancovici. In addition to that
we have found higher order contributions proportionat fo
and#®. With this derivation we have shown that the mag-
netic virial function(53) has the correct asymptotic proper- 0.0 : :
ties. This may be regarded as a strong support of the argu 40 20 0.0 20
ment that the sum in E459) can be extended to the values 5
of k=2, 3, 4, and 5, in order to obtain the desired result as  FiG. 1. Plot of the magnetic quantum virial functi@®(£). The
given in Eq.(53). Notice that from the Wigner-Kirkwood positive branch £>0) corresponds to the electron-proton interac-
expansion follows the absence of the linear term in the Taytion and the negative branck<€0) to the electron-electron inter-
lor expansion(53). action.
Finally we give the asymptotic form @B(¢) for positive
arguments. To establish this property, we first observe thagrge ¢, i.e., at low temperatures, due to the formation of
the magnetic virial function obeys the following relation:  phoyund states. While for like charge@B(¢) increases linear
at largeé.

2.0 r

B B/ _
QU +QU(=¢) The behavior of the exchange magnetic virial function is
* k—3)(k—2)+(k—5)¢(k—4 k shown in Fig. 2. In the quantum regime, at sngalbne finds
=27 > (k=3)f(k—2)+ (k—5){(k—4) (5) a finite contribution to the thermodynamic functions. While
k=24,... I'(2+k/2) 2 EB(g) decreases exponentially in the classical regime, i.e., at

(68) large ¢ values. This result was also found in REE2].

From this, it follows by using the representation of the
{-function as an infinite sum and then carrying out the sum
over Kk, that

IV. MAGNETIZATION AND MAGNETIC
SUSCEPTIBILITY

J— S| We now compute the magnetization in linear approxima-
p . ) - . :
+1 &4+ 2 B tion (we.al_<jf|eld limiy and (_:onstruct from this .the magnetic
96( )g Vma®(g), susceptibility. Thereby spin effects and orbital effects are
(69  treated on equal footing. Let us suppose that the magnetiza-
tion may be divided into ideal and interaction contributions

Q®(-¢)= QB(§)+

where we have defined

1.0
o)=Y, 2n%(1+n?) e<f/2)21’“2—1—(§) -
n=1 2 n2
0.8 |
1(e\%1] < 2\2
g3 B el
' o=t 0.6
2 4 )
x| e(é?1n® _q _ §rL_ 1&gt i
2 n2 2I 2 n4 ! 04 [
1/£\81 0
“3112) o) (70 02
Now let us briefly summarize the properties of the magnetic
quantum virial function. In Fig. 1 we have plott€F (&) for 005 40 30 20 10 0.0
both positive and negative arguments, i.e., for electron-ion ' ' ' £ ' ' '

and electron-electron interaction, respectively. It shows an
asymmetric behavior. For opposite charged particles the FIG. 2. Plot of the exchange magnetic quantum virial function
magnetic quantum virial function increases exponentially aEB(¢).
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n)fee
FIG. 4. Magnetic susceptibility as a function of the coupling

FIG. 3. Magnetic susceptibility as a function of the degeneracyparametel (inverse temperatuydor various fixed densities.
parameter n)\ge for various temperatures(note that |&.d

. 1/
[3150007 (K)I**). zero field magnetic susceptibility y&[d(M,

+Mi)/dBlg=0), with the result
M:Mid+Mint' (71)

_ T o\ 3AB T \3 B
X=x| 1+ Zn)\eQ (€0)+ Zn)‘eeQ (€eo)
We restrict ourselves to the magnetization of the electronic
subsystem, since the magnetization of the subsystem of the
hea ositive ions is negligibly small. However, the con- _ 3 =0 T 3B
tribu\g/orr: of the electron—%r? in¥eraction is fully included 3mhedE (£eo Zm\eeE (&eo) |- (75)
into our calculation. The ideal magnetizatiot =

—(1/Q)(9F/9B) may be calculated from The first term is Landau’s result for the magnetic suscepti-
bility, x_=(1/6)(n%%e*8/mZ), of an ideal system in Boltz-
P nA3  x mann statistics, while the next terms describe the density
Mg=nkT—In| — ———|. (720  effects. These effects contain the interaction of the particles
! JB 2 tanh(x,)

as well as the deviation from the Boltzmann statistics. Figure
3 shows the magnetic susceptibility as a function of the den-
Evaluating this in the weak field limit, we get Landau’s re- Sity parameten\?, of the system for various temperatures.
sult for the sum of the spin magnetism and the diamagneln Fig. 4 we have plotted the magnetic susceptibility as a
tism, which reads function of the inverse temperature for various fixed densi-
ties. We find foré..<1.2 a decrease and fd@r.>1.2 an
increase of the paramagnetic susceptibility. The transition
from negative to positive corrections occurs &t-2
X 10° K. This nonmonontonic dependence on the tempera-
ture is the result of two competiting effects. The first effect
can be explained on the basis of an ideal quantum plasma.
The interaction part of the magnetization may be expresse®he exchange contribution of the ordef, which describes
in terms of the magnetic virial function. By taking the de- the first deviation from the Boltzmann statistics, decreases
rivative of the full second virial coefficient with respect to the magnetic susceptibility. On the other hand, the interac-
the magnetic field one obtains tion between the particles tends to increase the magnetic sus-
ceptibility. This effect becomes dominant at low tempera-
- - tures, while at high temperatures the exchange effects are
3AB 3 AB dominant.
(4 MeQet 7 MeRee We note that fog>1, i.e., forT<2x10° K, the contri-
bution from the positive interaction parametér>0) may
. become very large due to its exponential increase with 1/
- 37-rn)\§eEge— EMSGEEG). (749 The region where a considerable number of bound states are
formed requires a special treatm¢20]. Clearly, this theory
is restricted to the region in whidhy— x,|/x. <1 is valid.
Here we have introduced a density expansion of the thermo- Finally, we mention that the magnetization and magnetic
dynamic functions, that can be obtained from the fugacitysusceptibility of an OCP can be derived from the results of
expansion by an iteration procedure, as discussed in Refthe TCP (74), (75). This limit is obtained by sending the
[19,20. This expression may now be used to calculate thanass of one species to infinity and the charge to zero while

_1nh%’BB

L_6 mg

(73

1 nA2%e’BB
im:g m—g
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ensuring charge neutrality of the system. Then the magneticoincides with the Wigner-Kirkwood expansion derived by

susceptibility of an OCP in linear response reads Alastuey and Jancovig¢il3].
r
XOT= x| 1+ 7PN EQ5(bed) —3TAIE  (£ee)
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