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Second virial coefficient for the Landau diamagnetism of a two-component plasma
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Institut für Physik, Humboldt Universita¨t zu Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany

~Received 12 July 1999!

This paper investigates the density expansion of the thermodynamic properties of a two-component plasma
under the influence of a weak constant uniform magnetic field. We start with the fugacity expansion for the
Helmholtz free energy. The leading terms with respect to the density are calculated by a perturbation expansion
with respect to the magnetic field. We find a magnetic virial function for a low density plasma which is exact
in quadratic order with respect to the magnetic field. Using these results we compute the magnetization and the
magnetic susceptibility.

PACS number~s!: 05.30.2d, 05.70.Ce, 71.45.Gm, 52.25.km
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I. INTRODUCTION

The topic of matter in magnetic fields has received mu
attention. The magnetic field has a great effect on the in
vidual motion of charged particles. In classical mechan
the motion of free particles in a magnetic field can be
scribed by circular orbits. The frequency associated with
rotation is the cyclotron frequencyvc5eB0 /me . In quan-
tum mechanics the motion perpendicular to the magn
field is quantized with the corresponding energy eigenval
E'5\vc(n11/2) @1#. A wide range of subsequent invest
gations covers the properties of atoms and molecules in m
netic fields. Their study is motivated by the astrophysi
implications concerned with the physics of pulsars and n
tron stars, but also by its application in quantum chaos@2–4#.
The calculation of the energy spectrum of a hydrogen a
in strong magnetic fields has been tackled by various aut
@5–7#. One of the complications found in the theory is t
coupling of the center of mass motion with the relative m
tion @6#. This also complicates the calculation of the therm
dynamic functions of a low density plasma. However, t
effect becomes important at strong fields only. Through
this paper we will consider the weak-field limit in which ca
this effect becomes negligible. In this limit the proton ma
is considered to be infinite.

Although the magnetic field affects the individual motio
of the particles, there is no influence of the magnetic field
the equilibrium properties of a classical charged particle s
tem. This follows from the Bohr–van Leeuwen theore
@8,9#, which can be easily derived by changing the varia
in the momentum integrals in such a way that one wo
with the variablep5p2eA. As a result of this all equilib-
rium properties are independent of the magnetic field.
quantum mechanics this argument is no longer valid, si
the momentum operator and the coordinate operator o
particle do not commute. A common example of an equil
rium value which depends on the magnetic field is the m
netization of an electron gas. It was shown by Landau@10#
that the low field magnetization of a spinless electron gas
Boltzmann statistics, is

Morb52
neb\2vc

12m
, ~1!

i.e., the so-called orbital part contributes to a diamagn
PRE 611063-651X/2000/61~3!/2290~10!/$15.00
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response. However, the full response of the free~noninter-
acting! electron gas, including the spin part, is paramagne

The magnetization of a system of charged particles i
boundary effect. In classical mechanics the magnetiza
induced by the motion of the bulk electrons is cancelled
the magnetization connected with the surface current. Ag
in quantum mechanics this statement is not valid anymo
Landau used a perturbation expansion of the free energy
respect to the magnetic field, to circumvent difficulties due
the boundary effects. In doing so the electrons at the bou
ary of the system were neglected. Then the magnetizatio
found as the derivative of the free energy with respect to
magnetic field. Another approach has been chosen by Te
@11#. He calculated the current at the boundary of the syst
produced by the motion of the elctrons under the influence
uniform magnetic field. From this he computed the magn
zation of the system and was able to show the equivalenc
his method and Landau’s approach. However, as Teller
ready pointed out Landau’s method is much better suited
more complicated problems.

The difficulties connected with the boundary effects a
perhaps one of the reasons for the few results concerning
equilibrium statistical mechanics of a low density quantu
plasmas embedded in an external magnetic field. A first
tempt beyond Landau has been pursued by Alastuey
Jancovici. They studied, by means of a Wigner-Kirkwo
expansion, the magnetic properties of a nearly classical
component plasma~OCP! in two and three dimensions in th
weak field@12# as well as in the strong field limit@13#. Re-
lated problems were treated by Cornu@14# and Boose and
Perez@15# who derived a formally exact virial expansion o
the EOS of a multicomponent plasma by using the Feynm
Kac path-integral representation of the grand-canonical
semble.

This paper is aimed to calculate the magnetic proper
of a quantum plasma in the low density limit. These syste
are characterized by a small coupling parameterG, which is
given by

G5
e2

4pe0kTd
, ~2!

whered5(3/4pn)1/3 is the mean distance between the p
ticles. We follow the method of Landau for the calculation
the magnetization. The starting point is the fugacity exp
2290 ©2000 The American Physical Society
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sion of the Helmholtz free energy. In a previous work@16#
the authors have performed a perturbation expansion for
equation of state of a low density plasma up to the or
n2e4, which is valid at arbitrary magnetic field strength.
the present paper we perform an expansion of the therm
namic functions for a low density plasma (G,1) up to the
order n2 and calculate the coefficients of this expansion
quadratic order with respect to the magnetic field, witho
making any approximation with respect to the Coulom
problem. Using a diagrammatic language this can be rest
as the calculation of all ladder diagrams expanded to sec
order in the magnetic field. In doing so we will consider t
B andB2 terms of the Hamiltonion separately. We will se
that the separate contributions are divergent, only the sum
all contributions give a convergent expression. This is
price which we have to pay within the present method c
cumventing the calculation of boundary effects.

This paper is organized as follows. In Sec. II, we discu
the representation of thermodynamic functions by a fuga
expansion. The second virial coefficient of a magnetiz
plasma will be discussed in Sec. III. In the first part of S
III, we present in more detail the calculation of the electro
ion contribution to the thermodynamic functions in the ca
of an infinite proton mass and in the second part an analy
continuation will lead us to the electron-electron contrib
tion. In the third part of Sec. III the asymptotic behavior
the new proposed magnetic virial functions will be studie
Finally, the derived results are used to compute the mag
tization and the magnetic susceptibility in Sec. IV.

II. REPRESENTATION OF THE THERMODYNAMIC
FUNCTIONS BY A FUGACITY EXPANSION

In this section, we briefly present the general method u
in this work and give the exact results derived in an ear
work @16#. Let us consider a two-component charg
symmetrical system ofN spin half particles of charge (2e)
and massme andN spin half particles of chargee and mass
mi . The Hamilton operator of our system consists of tw
particle contributions. Each pair of speciesa andb contrib-
utes

Hab
l 5S ~pa2eaAa!2

2ma
1mB

aB0szD
1S ~pb2ebAb!2

2mb
1mB

bB0szD1lVab~r !,

sz521,11 ~3!

with the Coulombic interaction potential

Vab~r !5
eaeb

4pe0r
. ~4!

HereHab is the Hamilton operator of the two particle syste
and Hab

0 of the noninteracting system. The additive ter
mB

aB0sz takes into account the coupling between the intr
sic magnetic moment@mB

a5ea\/(2ma)# of the charged par-
ticles and the magnetic field. We suppose that the pres
can be split into ideal and interaction contributions
he
r
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p5pid1pint . ~5!

In the case without Coulomb interactione250 the pressure
and the particle density of the plasma in a homogene
magnetic fieldB5(0,0,B0) are given by a sum of Ferm
integrals over all Landau levelsn,

pid5kT(
a

4xa

La
3

1

p
( 8
n50

F1/2 @ ln~zn
a!#,

~6!

n5(
a

2xa

La
3

1

p
( 8
n50

F21/2 @ ln~zn
a!#

„xa5\vc
a/(2kT) with vc

a5ueauB0 /ma , La5h/A2pmakT,
and zn

a5exp@b(m2n\vc
a)#…. The prime indicates the doubl

summation due to the spin degeneracy except for then50
level.

The interaction part of the pressure will be expressed
terms of a fugacity expansion which will be truncated af
the second virial coefficient@17–21#

bpint5
k3

12p
1(

ab
z̃az̃bS p

3
lab

3 jab
3 ln~klab!

1
p

2
b3

ea
2

4pe0

eb
4

~4pe0!2
1BabD 10~ z̃5/2ln z̃!, ~7!

where we have introduced the modified fugacities

z̃a5za

2

La
3

xa

tanh~xa!
, ~8!

in order to havez̃a→na in the limit of small densities. The
first term on the right-hand side~RHS! of Eq. ~7! is the
Debye contribution in the grand canonical ensemble. T
squared inverse Debye radius is given byk25b(e2/e0)( z̃e

1 z̃i). Since it is a classical contribution the Debye term do
not depend on the field. In the limit of small densities Eq.~7!
coincides with the formally exact virial equation of state d
rived by Cornu@14# and Boose and Perez@15#. We now try
to extend these calculations and focus on the calculation
the second virial coefficientBab . In order to avoid conver-
gence problems let us in a first approach cut the Coulomb
at large distances, i.e.,Vab(r )50 if r .R. Then the second
virial coefficient reads

Bab5
1

2V S La
3

2

tanh~xa!

xa
D

3S Lb
3

2

tanh~xb!

xb
DTr~e2bĤab2e2bĤab

0
!. ~9!

This function will be studied in more detail in the next se
tion.
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III. SECOND VIRIAL COEFFICIENT
OF A MAGNETIZED PLASMA

It is convenient to divide the second virial coefficient in
the direct partBab

d and the exchange partBaa
ex

Bab5Bab
d 1Baa

exdab , ~10!

and to compute them separately. The exchange part ofBab as
defined by Eqs.~9! with the Hamilton operator given by Eq
~3! is convergent while ifR→` the direct part is divergent
This is due to the long range behavior of the Coulomb int
action which leads to collective effects. In order to inclu
these collective effects one has to perform a screening
cedure, which may then lead to convergent expression
Bab . Such a technique is well established in the zero m
netic field case@17–21# and can be easily extended to th
nonzero magnetic field case. In general,Bab is an analytic
function of the interaction parameterjab @21#, defined by

jab52
eaeb

4pe0kTlab
, ~11!

with lab5\/A2mabkT and mab5mamb /(ma1mb) being
the effective mass. HenceBab may be written as a Taylo
expansion. Using the methods as described in Refs.@17–21#
we derived in our earlier work@16# the lowest order contri-
bution toBab . As in the zero field case we write the dire
part of the second virial coefficient of the plasma in the f
lowing form:

Bab
d 5Bab8 1Bab9 , ~12!

where the contributions of second and third order injab are
included inBab8 , with

Bab8 52
1

8
p3/2lab

3 jab
2 h2~xa ,xb!

2
p

3 S C

2
1 log 32

1

2Dlab
3 jab

3 h3~xa ,xb!. ~13!

In general the magnetic field correctionh2,3 satisfiesh2,3
51 if the magnetic fieldB50. The second order term ha
been found in Ref.@16# and is explicitely given by

h2~xa ,xb!5S 1

2
1

4

pE0

1

dtAt~12t !~ya1yb!

3
arctanhA12~ya1yb!

A12~ya1yb!
D , ~14!

with ya,b5laa,bb
2 sinh(xa,bt)sinh@xa,b(12t)#/@lab

2 t(1
2t)2xa,bsinh(xa,b)#. The magnetic field correctionh3 is so far
not exactly known. In the limit of zero fieldh351 holds;
furthermore, in the next section we will derive an express
for h3 in the weak field limit.

Formally the higher order contributions may be expres
by a resolvent expansion@20#
-

o-
or
-

-

n

d

Bab9 5
1

2V S La
3

2

tanh~xa!

xa
D S Lb

3

2

tanh~xb!

xb
D P9

3Tr(
k

1

2p i EC
dz e2bzF 1

Hab
0 2z

VabG k
1

Hab
0 2z

.

~15!

The contour integral may be taken in the sense of an inve
Laplace transform. The operatorP9 means that all terms o
order less thanj4 have to be omitted, since they have alrea
been taken into account inBab8 . The series may then b
written in the general form

Bab9 52p3/2lab
3 (

k54

`
z~k22!hk~xa ,xb!

G~11k/2! S jab

2 D k

. ~16!

The functionshk expressing the magnetic corrections satis
the zero field condition

hk~0,0!51. ~17!

Therefore in the zero magnetic field case an exact calcula
of the convergent second virial coefficient is possible
agreement with earlier work@20,21#.

An alternative expression for the field free virial coef
cient which we may refer to asBab

0 may be obtained by
introducing the quantum virial functionQ0(jab) @21# accord-
ing to

Bab
0 52plab

3 Q0~jab!, ~18!

with

Q0~jab!52
1

8
Apjab

2 2
1

6
jab

3 S C

2
1 ln 32

1

2D
1Ap(

k54

`
z~k22!

G~11k/2! S jab

2 D k

. ~19!

Note that the second order term may be included into
series, sincez(0)521/2.

Now let us discuss the exchange part. Again, as it w
shown in Ref.@16# this contribution may be written in a
Taylor expansion

Baa
ex5p3/2laa

3 (
k50

`

~12222k!
z~k21!bk~xa!

G~11k/2! S jaa

2 D k

.

~20!

Here we have included the terms with nonpositive argume
in the z function. In particular we have used the relation

lim
k→2

~12222k!z~k21!5 ln 2. ~21!

The zero field results are reproduced, since we havebk(0)
51 and they may be written, after introducing the exchan
virial function E0(jaa), as

Baa
0 ex52plaa

3 E0~jaa!, ~22!

with
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E0~jaa!5Ap(
k50

`

~12222k!
z~k21!

G~11k/2! S jaa

2 D k

. ~23!

The influence of the magnetic field on the exchange part
been studied in@16# for the lower order termsb0 , b1, and
b2. The following analytical expressions were derived:

b0~xa!5
cosh~2xa!

cosh2~xa!

tanh~xa!

xa
~24!

and

b1~xa!5
cosh~2xa!

cosh2~xa!

tanh~xa!

xa

arctanhA12tanh~xa!/xa

A12tanh~xa!/xa

.

~25!

For an integral representation ofb2 we refer the reader to Eq
~C4! of Ref. @16#.

A. Expansion in the weak field limit
for the ion-electron interaction

We shall find an expansion of the second virial coefficie
in the weak field limit. The magnetic field is now assumed
be a small perturbation to the field-free Coulomb problem
this case we can use the already established results fo
second virial coefficient in the absence of a field@21#. Due to
the invariance of the thermodynamic functions under
transformationB→2B the first correction to the field-free
results will be quadratic in the magnetic field. This can a
be verified in the ideal contribution~Pauli spin magnetism
and Landau diamagnetism!.

Let us consider a hydrogen plasma with an infinite pro
mass. This is a reasonable approximation in the weak fi
limit, as the proton frequency is proportional to the inver
mass of the proton. We chose the symmetric gaugeA
5 1

2 (B3r ). Then the Hamiltonian in relative and center
mass coordinates takes the form

Hei5
P2

2mi
1

p2

2me
1

mevc
2

8
r22 i

\vc

2

]

]f

1mB
eB0sz2

e2

4pe0r
, ~26!

wherevc is the electron cyclotron frequency. The elctro
ion contributionBei

d to the second virial coefficient is give
by the following trace:

Bei
d 5

1

2V
Pk8S L i

3

2 D S Le
3

2

tanh~xe!

xe
DTr~e2bHei2e2bHei

0
!.

~27!

As in the zero magnetic field case we have defined an op
tor Pk8 that takes into account the divergency, by omitting
terms of orderek with k,k8.

The trace over the center of mass coodinates and ove
spin variable is readily carried out. Again we use the res
vent representation to obtain the following contribution:
as

t

n
the

e

o

n
ld
e

a-
l

he
l-

Bei
d 54p3/2le

3 sinh~xe!

xe
Pk8E

C

dz

2p i
e2bzTrS 1

hei2z
2

1

hei
0 2z

D ,

~28!

with le5\/A2mekT. Here we have introduced the Hami
ton operators for the free relative motion

hei
0 5

p2

2me
1

mevc
2

8
r22 i

\vc

2

]

]f
, ~29!

and for the relative motion of the interacting particles

hei5hei
0 2

e2

4pe0r
. ~30!

We are interested in the case of a weak magnetic field w
out making any approximation with respect to the Coulom
problem. For that we expandBei in powers of xe
5\vc/2kT. It can be easily shown that the linear term
equal to zero and the first nonvanishing term is proportio
to xe

2 . This contribution may be written as

Bei
d 5S 11

xe
2

6 DBei
0 1Bei

1 1Bei
2 . ~31!

The first term comes from the expansion of the normaliz
constant and therefore the trace is solely given by the z
field result @21#. In order to take into account the infinit
proton mass in Bei

0 one has to replacelei by le

5\/A2mekT and, hence,jei by je52eeei /(4pe0kTle).
The other two terms, being of the orderO(B2), are the result
of an expansion of the trace in powers of the magnetic fi
and read as

Bei
1 54p3/2le

3Pk8E
C

dz

2p i
e2bz

3TrF 1

hc2z
S 2 i

\vc

2

]

]f D 1

hc2z
S 2 i

\vc

2

]

]f D 1

hc2z
G

~32!

and

Bei
2 524p3/2le

3Pk8E
C

dz

2p i
e2bzTrF 1

hc2z
S mevc

2

8
r2D 1

hc2z
G .

~33!

Herehc5p2/2me2e2/4pe0r is the Hamiltonian for the Cou-
lomb problem for zero magnetic field. In what follows w
briefly outline the steps leading to the final result forBei

1 and
Bei

2 . For simplicity the calculations of these contribution
may be carried out separately, but as will be seen below o
the sum of both gives a convergent contribution.

1. Calculation of Bei
1

Let us first concentrate on the calculation ofBei
1 . The

perturbation operator has spherical symmetry. Thus it is c
venient to use the eigenfunctions of the Coulomb opera
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With that the calculation of the matrix elements becom
trivial. As in the zero field case we can write

Bei
1 54p3/2le

3Pk8E
C

dz

2p i
e2bz

3H (
n51

`

(
l 50

n21

(
m52 l

l
1

~En2z!3

~\vc!
2

4
m21(

l 50

`

(
m52 l

l

3E
0

`

dk
1

~\2k2/2m2z!3

~\vc!
2

4
m2

1

p

dd l~k!

dk J . ~34!

Here we have made use of the relation between the den
of states for the continuum states and the scattering p
shifts d l(k) of the Coulomb system. The eigenvalues of t
Coulomb system readEn521/2n2 and can be expressed
terms of the parameterj by

2bEn5S je

2 D 2 1

n2
. ~35!

First we compute the discrete part of the partition functio
that is given by the first term in Eq.~34! and reads

Bei
1b54p3/2le

3
xe

2

G~3!
Pk8(

n51

`

(
l 50

n21

(
m52 l

l

m2e2bEn, ~36!

where we have performed the inverse Laplace transfo
The summation overm and l is trivial and one immediately
finds that

Bei
1b54p3/2le

3
xe

2

12
Pk8(

n51

`

~n42n2!expS je

2nD 2

. ~37!

By expanding the exponential and using the representatio
the z function we obtain

Bei
1b54p3/2le

3
xe

2

12
Pk8 (

k52,4, . . .

z~k24!2z~k22!

G~11k/2! S je

2 D k

.

~38!

So far we have calculated the bound state contribution
Bei

1 . In the next step we consider the contribution of con
nous spectrum. For that we need the scattering phase s
of the field free Coulomb problem that are given by

d

dk
d l~k!52

1

k2 S e2me

\2 D Re cS l 111 iUe2me

k\2 U D . ~39!

Making use of this relation and introducingt5le
2k2 the sec-

ond term in Eq.~34! may be written as

Bei
1s5p1/2le

3xe
2Pk8E

C

dz

2p i
e2z(

l 50

`

(
m52 l

l

m2

3E
0

` dt

t3/2

je

~ t2z!3
Re cS l 111

i

2At
UjeU D .

~40!
s

ity
se

,

.

of

to
-
ifts

In order to compute the sum overm andl we will expand the
c function, we have

Re cS l 111
i

2At
UjeU D 5Re(

k50

`
1

k!
c (k)~ l 11!S i

2At
UjeU D k

.

~41!

Now the summation overm and l may be carried out. We
obtain by introducingt5 l 111s

Pk8 (
l 50

`

(
m52 l

l

m2
1

k!
c (k)~ l 11!

5~21!kPk8(
l 50

` 1

3
~2l 313l 21 l !(

s50

` 1

~ l 111s!k11

5~21!kPk8(
t51

` 1

tk11
(
l 50

t21 1

3
~2l 313l 21 l !

5~21!kPk8
1

6
@z~k23!2z~k21!#. ~42!

Next we perform all remaining integrations. In this conte
we may use the following integral representation:

E
C

dz

2p i
e2zE

C8

dt

t3/2

je

~ t2z!3 S i

2At
UjeU D k

5
2p

G@~k13!/2# S ujeu
2 D k11

. ~43!

Here the contour integralC8 in the complext plane encircles
the positive real axis in the mathematical positive sense.
ing Eqs. ~40!, ~42!, and ~43! we obtain, after shifting the
summation indexk→k21, the series

Bei
1s522p3/2le

3
xe

2

12 (
k56

z~k24!2z~k22!

G~11k/2! S 2
ujeu
2 D k

.

~44!

Finally we sum up the bound state~38! and the scattering
state~44! contribution, which gives

Bei
1 52p3/2le

3 x2

12 (
k56

z~k24!2z~k22!

G~11k/2! S ujeu
2 D k

. ~45!

Here the sum runs fromk56, since in this derivation the
lower order termsk,6 would give divergent contributions
However, formally thez function can be extended to neg
tive values and therefore the sum to smallerk values such as
k52, 3, 4, and 5. It will be shown below that this exte
sion is possible and gives the exact lower order contri
tions.

Note that the bound state contribution and the scatte
state contribution differ by a factor of 2. This general sta
ment has been previously derived in the zero field case@20#.
It is essentially a consequence of the analyticity of the s
ond virial coefficientBab(j) and expresses the fact of com
pensation of bound state and scattering state contribut
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according to Levinsons theorem@20#. One may also regard i
as rule of obtaining scattering quantities from bound st
quantities. We will employ this relation in the following se
tion.

2. Calculation of Bei
2

Again we first concentrate on the calculation of the bou
state contribution. We may use the eigenfunction of the C
lomb operator to evaluate the trace. Thus we have

Bei
2b524p3/2le

3Pk8E
C

dz

2p i
e2bz

3 (
n51

`

(
l 50

n21

(
m52 l

l
1

~En2z!2 K nlmUmvc
2

8
r 2sin2uUnlmL .

~46!

The calculation of the matrix elements is readily carried
@1#, with the result

K nlmU mevc
2

8
r 2sin2uUnlmL

5
mevc

2

8
aB

2 n2

2
@5n21123l ~ l 21!#

3
4l 316l 212~2l 11!m222l 22

~2l 11!~2l 21!~2l 13!
. ~47!

With that we obtain after integration and summation over
magnetic quantum numberm

Bei
2b524p3/2le

3
xe

2

3je
2

Pk8(
n51

`

(
l 50

n21

e2bEun2

3@5n21123l ~ l 11!#
8l 3112l 222l 23

~2l 21!~2l 13!
. ~48!

By summing overl we get

Bei
2b524p3/2le

3Pk8(
n51

`

e2bEn
xe

2

6je
2

n4~7n215!. ~49!

As before we expand the exponential, introduce thez func-
tion and obtain the following expression for the bound st
contribution:

Bei
2b524p3/2le

3
xe

2

24 (
k56

7z~k24!15z~k22!

G~21k/2! S je

2 D k

.

~50!

Now we shall calculate the scattering part. This contribut
may be obtained by applying the same arguments that h
led to the final expression ofBab

1 :

Bei
2 522p3/2le

3
xe

2

24 (
k56

7z~k24!15z~k22!

G~21k/2! S je

2 D k

.

~51!

Again, only contributionsk>6 are retained from this sum.
e

d
-

t

e

e

n
ve

3. Final results for the electron-ion contribution

We can now take the sum of the various contributio
Eqs.~31!, ~45!, and~51! in order to obtain the quantum viria
function. As we have indicated before we may now drop
operatorPk8 and may postulate the virial coefficient, with

Bei
d 52ple

3Q0~je!12ple
3

xe
2

24
QB~je!, ~52!

where we have defined the new magnetic quantum vi
function Qab

B by

QB~jab!5Ap(
k52

`
~k23!z~k22!1~k25!z~k24!

G~21k/2! S jab

2 D k

.

~53!

In spite of the fact that the derivation given above is va
only for k>6 we have extended the sum tok>2. By study-
ing the asymptotic properties of this function we will sho
that the magnetic quantum virial function has the corr
asymptotics for largej. Another independent verification o
this result can be obtained by expanding the exact sec
order contribution as given in Eq.~14!. The quantum virial
function QB(je) may be interpreted as the limit ofQB(jEI)
with an infinite proton massmi→` . For k53,5 we make
use of the relation lim

k→3
(k23)z(k22)51. In the next

section we will show that the same analytical function det
mines also the contribution of the electron-electron inter
tion.

B. Electron-electron contribution

We first study the Hamilton operator in c.m. and relati
coordinates. In this case the Hamiltonian is separable
may be written asHee5Hee

c.m.1hee, with the center of mass
Hamiltonian

Hee
c.m.5

P2

4me
1

e2B2

4me
R2sinQ22 i

\vc

2

]

]F
. ~54!

It describes the free motion of a particle with mass 2me
parallel to the field. While we have an harmonic oscillat
with frequencyvc5eB/me perpendicular to the field. The
Hamiltonian for the relative motion is given by

hee5
p2

me
1

e2B2

16me
r 2sinu22 i

\vc

2

]

]f
1

e2

4pe0r
. ~55!

It has the same structure as the Hamiltonian for the rela
motion of an electron in the field of a proton with infinit
mass. The only difference is the appearance of differ
masses in the various terms ofhei and hee. However, by
appropriately redefining the length scales and dimension
parameters involved in the problem, one can maphee onto
hei . This means in detail the replacement ofle by lee and of
je by jee in Eqs.~52!, ~53!. Now we may use the analyticity
of the virial coefficient with respect to the interaction para
eter. We may extend the result obtained for the electron-
part Eq.~53! by analytical continuation to negativej values.
Thus we have for the electron-electron contribution
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Bee
d 52plee

3 Q0~jee!12plee
3

xe
2

24
QB~jee!. ~56!

The magnetic quantum virial functionQB(jee) is given by
Eq. ~53!. Note that this series holds also for the ion-ion i
teraction ifme is substituted bymi . However, its contribu-
tion to the virial coefficient is negligible in the weak fiel
limit.

Let us briefly state the result for the exchange part of
electron-electron contribution. It may be obtained by int
ducing an additional factor (21)l in Eqs. ~34! and ~46!
which takes into account the exact symmetry of the wa
function. Then following the same steps as described in S
III we find

Bee
ex52plee

3 cosh~2xe!

cosh2~xe!
E0~jee!

2plee
3

xe
2

6

cosh~2xe!

cosh2~xe!
EB~jee!, ~57!

with the new magnetic exchange virial function

EB~jaa!5Ap(
k50

`
1

G~11k/2! S k

21k
~12242k!z~k23!

2
4

21k
~12222k!z~k21! D S jaa

2 D k

. ~58!

The factor cosh(2xe)/cosh2(xe) in Eq. ~58! is a result of the
spins of the particles and can be calculated exactly. Ag
one may check these results for the orderk50,1 by compari-
son with the exact contributions given by Eqs.~24! and~25!.

C. Asymptotic properties of the virial function

Let us now make an independent test of the above m
statements. This investigation relies on two facts. First
consider the elctron-electron contribution only, then in t
limit j→` the quantum virial functionQB(j) should be
equal to the Wigner-Kirkwood expansion@12#, since j
;\21. That means in this limit the plasma behaves ess
tially as a classical system. The second argument is tha
electron-electron contribution may be obtained from the i
electron contribution, and vice versa, by simple replaceme
of the interaction parameter as discussed in the previous
tion. Let us start by studying the higher order contributio
k>6 to the magnetic virial function~truncated virial func-
tion!, which read according to Eq.~53! as

Q8B~j!5Ap(
k56

`
~k23!z~k22!1~k25!z~k24!

G~21k/2! S j

2D k

,

~59!

with j,0. TheG function can be represented by an inver
Laplace transform

1

G~z!
5E

d2 i`

d1 i` dt

2p i

et

tz
. ~60!
e
-

-
c.

n,

de
e
e

n-
he
-
ts
c-

s

With that and after rearranging the sum over k,Q8B(j) can
be rewritten as

Q8B~j!5ApE
d2 i`

d1 i` dt

2p i

et

t2 (
k54

`

~k23!z~k22!

3F11S j

2At
D 2G S j

2At
D k

2Ap
z~2!

G~4! S j

2D 4

2Ap
2z~3!

G~9/2! S j

2D 5

. ~61!

In the following we make use of the relation:

(
k54

`

~21!k~k23!z~k22!xk5x4S c8~x!2
1

x2D , x.0,

~62!

which gives then

Q8B~j!5ApE
d2 i`

d1 i` dt

2p i

et

t2 S j

2At
D 4F11S j

2At
D 2G

3Fc8S uju

2At
D 2S 2At

uju D 2G2Ap
z~2!

G~4! S j

2D 4

2Ap
2z~3!

G~9/2! S j

2D 5

. ~63!

It useful to employ the asymptotic expansion of thec func-
tion

c~x!5 ln x2
1

2x
2(

s51

m
B2s

2sx2s
1r m~x!, ~64!

with the Bernoulli numbersB2k . Then we can perform the
inverse Laplace transform and find the following asympto
expansion of the truncated magnetic quantum virial functi

Q8B~j!52
Ap

G~9/2!
@112z~3!#S j

2D 5

2
Ap

G~4! S 1

2
1z~2! D

3S j

2D 4

2
Ap

G~7/2!
~11B2!S j

2D 3

2
Ap

2G~3! S j

2D 2

2
Ap

G~5/2!
~B21B4!S j

2D2
Ap

G~3/2!
~B41B6!S 2

j D
2

Ap

G~1/2!
~B61B8!S 2

j D 3

1o~j25!. ~65!

Now we may conclude that the full magnetic virial fun
tion defined by

QB~j!5Ap(
k52

5
~k23!z~k22!1~k25!z~k24!

G~21k/2! S j

2D k

1Q8B~j! ~66!

has the following asymptotic representation:
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QB~j!52
4

45
j1

4

105

1

j
1

8

105

1

j3
1o~j25!. ~67!

Remarkably, this procedure is accompanied by a term
term cancellation of the lower order contributionsk,6 com-
ing from the Taylor expansion with those coming from t
asymptotic expansion. The final expression may now
compared with the\2 expansion, which was computed b
Alastuey and Jancovici@12#. The linear term in the
asymptotic expansion ofQB(j) is the term proportional to
the \2 term of the Wigner Kirkwood expansion and coi
cides with that of Alastuey and Jancovici. In addition to th
we have found higher order contributions proportional to\4

and \6. With this derivation we have shown that the ma
netic virial function~53! has the correct asymptotic prope
ties. This may be regarded as a strong support of the a
ment that the sum in Eq.~59! can be extended to the value
of k52, 3, 4, and 5, in order to obtain the desired result
given in Eq. ~53!. Notice that from the Wigner-Kirkwood
expansion follows the absence of the linear term in the T
lor expansion~53!.

Finally we give the asymptotic form ofQB(j) for positive
arguments. To establish this property, we first observe
the magnetic virial function obeys the following relation:

QB~j!1QB~2j!

52Ap (
k52,4, . . .

`
~k23!z~k22!1~k25!z~k24!

G~21k/2! S j

2D k

.

~68!

From this, it follows by using the representation of t
z-function as an infinite sum and then carrying out the s
over k, that

QB~2j!5QB~j!1
Ap

8
j21

Ap

96 S p2

3
11D j412ApsB~j!,

~69!

where we have defined

sB~j!5 (
n51

`

2n2~11n2!Fe(j/2)21/n2
212S j

2D 2 1

n2

2
1

2! S j

2D 4 1

n4G2 (
n51

`

n4~517n2!S 2

j D 2

3Fe(j/2)21/n2
212S j

2D 2 1

n2
2

1

2! S j

2D 4 1

n4

2
1

3! S j

2D 6 1

n6G . ~70!

Now let us briefly summarize the properties of the magne
quantum virial function. In Fig. 1 we have plottedQB(j) for
both positive and negative arguments, i.e., for electron-
and electron-electron interaction, respectively. It shows
asymmetric behavior. For opposite charged particles
magnetic quantum virial function increases exponentially
y

e

t

-

u-

s

-

at

c

n
n
e
t

large j, i.e., at low temperatures, due to the formation
bound states. While for like chargedQB(j) increases linear
at largej.

The behavior of the exchange magnetic virial function
shown in Fig. 2. In the quantum regime, at smallj, one finds
a finite contribution to the thermodynamic functions. Wh
EB(j) decreases exponentially in the classical regime, i.e
largej values. This result was also found in Ref.@12#.

IV. MAGNETIZATION AND MAGNETIC
SUSCEPTIBILITY

We now compute the magnetization in linear approxim
tion ~weak-field limit! and construct from this the magnet
susceptibility. Thereby spin effects and orbital effects a
treated on equal footing. Let us suppose that the magne
tion may be divided into ideal and interaction contribution

FIG. 1. Plot of the magnetic quantum virial functionQB(j). The
positive branch (j.0) corresponds to the electron-proton intera
tion and the negative branch (j,0) to the electron-electron inter
action.

FIG. 2. Plot of the exchange magnetic quantum virial functi
EB(j).
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M5M id1M int . ~71!

We restrict ourselves to the magnetization of the electro
subsystem, since the magnetization of the subsystem o
heavy positive ions is negligibly small. However, the co
tribution of the electron-ion interaction is fully include
into our calculation. The ideal magnetizationM5
2(1/V)(]F/]B) may be calculated from

M id5nkT
]

]B
lnS nLe

3

2

xe

tanh~xe!
D . ~72!

Evaluating this in the weak field limit, we get Landau’s r
sult for the sum of the spin magnetism and the diamag
tism, which reads

ML5
1

6

n\2e2bB

me
2

. ~73!

The interaction part of the magnetization may be expres
in terms of the magnetic virial function. By taking the d
rivative of the full second virial coefficient with respect
the magnetic field one obtains

M int5
1

6

n\2e2bB

me
2 S p

4
nle

3Qe
B1

p

4
nlee

3 Qee
B

23pnlee
3 Eee

0 2
p

2
nlee

3 Eee
B D . ~74!

Here we have introduced a density expansion of the ther
dynamic functions, that can be obtained from the fugac
expansion by an iteration procedure, as discussed in R
@19,20#. This expression may now be used to calculate

FIG. 3. Magnetic susceptibility as a function of the degener
parameter nlee

3 for various temperatures„note that ujeeu
;@315000/T(K) #1/2

….
ic
he
-

e-

d

o-
y
fs.
e

zero field magnetic susceptibility (x5@](ML
1M int)/]B#B50), with the result

x5xLS 11
p

4
nle

3QB~je!1
p

4
nlee

3 QB~jee!

23pnlee
3 E0~jee!2

p

2
nlee

3 EB~jee! D . ~75!

The first term is Landau’s result for the magnetic susce
bility, xL5(1/6)(n\2e2b/me

2), of an ideal system in Boltz-
mann statistics, while the next terms describe the den
effects. These effects contain the interaction of the partic
as well as the deviation from the Boltzmann statistics. Fig
3 shows the magnetic susceptibility as a function of the d
sity parameternlee

3 of the system for various temperature
In Fig. 4 we have plotted the magnetic susceptibility as
function of the inverse temperature for various fixed den
ties. We find forjee,1.2 a decrease and forjee.1.2 an
increase of the paramagnetic susceptibility. The transit
from negative to positive corrections occurs atT;2
3105 K. This nonmonontonic dependence on the tempe
ture is the result of two competiting effects. The first effe
can be explained on the basis of an ideal quantum plas
The exchange contribution of the ordern2, which describes
the first deviation from the Boltzmann statistics, decrea
the magnetic susceptibility. On the other hand, the inter
tion between the particles tends to increase the magnetic
ceptibility. This effect becomes dominant at low tempe
tures, while at high temperatures the exchange effects
dominant.

We note that forj@1, i.e., forT!23105 K, the contri-
bution from the positive interaction parameter (j.0) may
become very large due to its exponential increase with 1T.
The region where a considerable number of bound states
formed requires a special treatment@20#. Clearly, this theory
is restricted to the region in whichux2xLu/xL,1 is valid.

Finally, we mention that the magnetization and magne
susceptibility of an OCP can be derived from the results
the TCP ~74!, ~75!. This limit is obtained by sending the
mass of one species to infinity and the charge to zero w

y
FIG. 4. Magnetic susceptibility as a function of the couplin

parameterG ~inverse temperature! for various fixed densities.
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ensuring charge neutrality of the system. Then the magn
susceptibility of an OCP in linear response reads

xOCP5xLS 11
p

4
nlee

3 QB~jee!23pnlee
3 E0~jee!

2
p

2
nlee

3 EB~jee! D . ~76!

In the previous section, we have checked that this expres
ys
tic

on

coincides with the Wigner-Kirkwood expansion derived
Alastuey and Jancovici@13#.
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